

#### CSP Program Summit 2016

# HIGH-TEMPERATURE FALLING PARTICLE RECEIVER

Contributors:

Sandia National Laboratories

Georgia Institute of Technology

**Bucknell University** 

King Saud University

German Aerospace Center (DLR)

energy.gov/sunshot SAND2016-3641 PF Clifford K. Ho, Sandia National Laboratories

#### **Overview**

- Introduction
- Particle Receiver System
- On-Sun Testing
- Conclusions

#### **Motivation**

- Higher Efficiency Electricity Production
  - Supercritical CO<sub>2</sub> Brayton Cycles (>700 °C)
  - Air Brayton Combined Cycles (>1000 °C)
- Thermochemical Storage & Fuels
  - ELEMENTS redox particles (>1000 °C)
  - Solar fuel production (>1000 °C)



#### **Advantages of Particle Receivers**

- Direct heating of particles
  - Higher temperatures than conventional molten salts
    - Enable more efficient power cycles
  - Higher solar fluxes for increased receiver efficiency
- Direct storage of hot particles
  - Reduced costs



CARBO ceramic particles ("proppants")

### **High Temperature Falling Particle Receiver**

(DOE SunShot Award FY13 - FY16)





Goal: Achieve higher temperatures, higher efficiencies, and lower costs.

#### **Overview**

- Introduction
- Particle Receiver System
- On-Sun Testing
- Conclusions

# Receiver Free-Fall vs. Obstructed Flow



## Particle Receiver Designs – Free Falling



## Particle Receiver Designs – Pachinko



#### **Particle Flow over Chevron Meshes**



**Pros**: particle velocity reduced for increased residence time and heating

**Cons**: Mesh structures exposed to concentrated sunlight (~1000 suns)

## **Particles**



# Particle Radiative Properties and Rejuvenation

| Material Name   | Туре             | Solar<br>weighted<br>absorptivity | Thermal emissivity* | Selective<br>Absorber<br>Efficiency** |
|-----------------|------------------|-----------------------------------|---------------------|---------------------------------------|
| Carbo HSP       | Sintered Bauxite | 0.934                             | 0.843               | 0.864                                 |
| CarboProp 40/70 | Sintered Bauxite | 0.929                             | 0.803               | 0.862                                 |
| CarboProp 30/60 | Sintered Bauxite | 0.894                             | 0.752               | 0.831                                 |
| Accucast ID50K  | Sintered Bauxite | 0.906                             | 0.754               | 0.843                                 |
| Accucast ID70K  | Sintered Bauxite | 0.909                             | 0.789               | 0.843                                 |
| Fracking Sand   | Silica           | 0.55                              | 0.715               | 0.490                                 |
| Pyromark 2500   | Commercial Paint | 0.97                              | 0.88                | 0.897                                 |

<sup>\*</sup>Spectral directional reflectance values were measured at room temperature. The total hemispherical emissivity was calculated assuming a surface temperature of 700 °C.

<sup>\*\*</sup>Q is assumed to be 6x10<sup>5</sup> W/m<sup>2</sup> and T is assumed to be 700 °C (973 K):  $\eta_{sel} = \frac{\alpha_s Q - \varepsilon \sigma T^4}{Q}$ 

## **Particle Durability**



 Laboratory tests for surface impact evaluation, attrition, and sintering



Ambient drop tests at ~10 m



Thousands of drop cycles at ambient and elevated temperatures (up to 1000 °C)

Knott, R., D.L. Sadowski, S.M. Jeter, S.I. Abdel-Khalik, H.A. Al-Ansary, and A. El-Leathy, 2014, High Temperature Durability of Solid Particles for Use in Particle Heating Concentrator Solar Power Systems, in Proceedings of the ASME 2014 8th International Conference on Energy Sustainability, ES-FuelCell2014-6586, Boston, MA, June 29 - July 2, 2014.

## **Balance of Plant**



## **Thermal Storage**

Experimental evaluation and modeling of prototype thermal

energy storage designs







El-Leathy et al., "Experimental Study of Heat Loss from a Thermal Energy Storage System for Use with a High-Temperature Falling Particle Receiver System," SolarPACES 2013

## Particle to Working Fluid Heat Exchanger



Experimental evaluation of heat transfer coefficients & particle flow



Golob et al., 2013, "Serpentine Particle-Flow Heat Exchanger with Working Fluid, for Solar Thermal Power Generation," Solar PACES 2013

#### **Particle Elevators**



- Evaluate commercial particle lift designs
  - Requirements
    - ~10 30 kg/s per meter of particle curtain width
    - High operating temperature ~ 500 °C
  - Different lift strategies evaluated
    - Screw-type (Olds elevator)
    - Bucket
    - Mine hoist



Repole K, Jeter S, "Design and Analysis of a High Temperature Particulate Hoist for Proposed Particle Heating Concentrator Solar Power Systems", Energy Conversion and Management, - Submitted

#### **Overview**

- Introduction
- Particle Receiver System
- On-Sun Testing
- Conclusions

## **Prototype System Design**



## **Particle Release Configurations**



Free-falling particles

Staggered array of chevronshaped mesh structures





# Lifting the system to the top of the tower – June 22, 2015





CSP Program Summit 2016

#### Lifting the system to the top of the tower





### Lifting the system to the top of the tower







#### **Prototype System on Tower**





CSP Program Summit 2016

#### **On-Sun Tower Testing**



#### **On-Sun Tower Testing**



Over 600 suns peak flux on receiver (July 20, 2015)

#### **On-Sun Tower Testing**



Particle Flow Through Mesh Structures (June 25, 2015)

#### **Overview**

- Introduction
- Particle Receiver System
- On-Sun Testing
- Conclusions

#### **Conclusions**

- Designed and constructed first continuously recirculating, on-sun, high-temperature particle receiver
  - Achieved average particle outlet temperatures >700 °C
    - Peak particle outlet temperatures >900 °C
  - Particle heating up to ~200 300 °C/(m of drop)
  - Thermal efficiency ~70% to 80%





#### **Next Steps**

- Received new DOE awards (FY16 FY18)
  - Particle/sCO2 heat exchanger
  - Novel particle curtain designs
- Improve receiver efficiency
  - Receiver geometry, shape, size, nod angle
  - Aperture coverings
- Reduce particle loss
  - Abrasion/wear
  - Wind
- System designs for scale-up (≥ 10 MW<sub>e</sub>)

## **Acknowledgments**



Award # DE-EE0000595-1558

#### Sandia National Labs

 Josh Christian, Daniel Ray, JJ Kelton, Kye Chisman, Bill Kolb, Ryan Anderson, Ron Briggs

#### Georgia Tech

Sheldon Jeter, Said Abdel-Khalik, Matthew Golob, Dennis Sadowski, Jonathan Roop,
 Ryan Knott, Clayton Nguyen, Evan Mascianica, Matt Sandlin

#### Bucknell University

Nate Siegel, Michael Gross

#### King Saud University

Hany Al-Ansary, Abdelrahman El-Leathy, Eldwin Djajadiwinata, Abdulaziz Alrished

#### DLR

Birgit Gobereit, Lars Amsbeck, Reiner Buck

# **Backup Slides**

## **SEM** Images of Used and Unused Particles



Unused



Used



### July 24, 2015 - Nearly 700 suns



# **SS316 Mesh Failure Analysis**



Mesh located far from failed region

Mesh located within failed region (ceramic particles sintered on mesh)

## **SS316 Mesh Failure Analysis**





Top right: cross-sectional view of oxidized wire mesh



|                                   | Fe Cr Ni Mo O Al Si (Wt% EDS semi-quant, standardless EDS) |      |      |      |    |      |      |  |
|-----------------------------------|------------------------------------------------------------|------|------|------|----|------|------|--|
| Location 1 Wire core              | 67                                                         | 20   | 6.7  | 5.2  | -  | -    | -    |  |
| Location 2  "intermetallic layer" | 19                                                         | 4.45 | 44   | 11   | 19 | 1.64 | 1.34 |  |
| Location 3 Oxidized zone          | 22                                                         | 18   | 4.39 | 5.26 | 48 | 1.1  | 1.75 |  |
| Location 4 Oxidized zone          | 34                                                         | 10   | 2.89 | 2.32 | 48 | -    | 1.45 |  |

# **SS316 Mesh Failure Analysis**







Cross-sectional view of oxidized wire mesh; wire ruptured and "leaked" molten steel out of oxidized shell (white is stainless steel, rough gray area is oxidized mesh)

CSP Program Summit 2016

#### **Irradiance Measurements**



Measured

**Simulated using Ray Tracing (SolTrace)** 

#### **Temperature Measurements**





## **Air Curtain Modeling (SNL)**



- Evaluate use of air recirculation along aperture to reduce heat loss and impacts of external wind
  - Investigate particle size, location, particle flow rate, air flow rate, external wind









100 μm particle size



 $10~\mu m$  particle size